organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 3,4-dibromo-2-(triisopropylsilyl)-1*H*-pyrrole-1-carboxylate

Martin G. Banwell,* Kate E. Holden and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia Correspondence e-mail: mgb@rsc.anu.edu.au

Received 23 July 2007; accepted 1 August 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.027; data-to-parameter ratio = 9.8.

The title compound, $C_{15}H_{25}Br_2NO_2Si$, represents a rare example of a C2-silylated pyrrole for which a single-crystal X-ray analysis has been completed. The molecule adopts an *s*-*transoid* conformation about the N–CO bond of the carbamate residue.

Related literature

For related literature, see: Bray *et al.* (1990); Couzijn *et al.* (2004); Frenzel *et al.* (1996); König *et al.* (1995); Kang *et al.* (1999, 2000); Liu *et al.* (2000); Marsh (2004).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{25}Br_2NO_2Si\\ M_r = 439.26\\ Monoclinic, P2_1/c\\ a = 14.6807 \ (4) \ \text{\AA}\\ b = 7.3800 \ (2) \ \text{\AA}\\ c = 17.4291 \ (5) \ \text{\AA}\\ \beta = 92.8487 \ (15)^\circ \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: integration [via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al., 1999)] $T_{min} = 0.447, T_{max} = 0.762$ $V = 1886.00 (9) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 4.37 mm⁻¹ T = 200 K 0.36 \times 0.10 \times 0.07 mm

41120 measured reflections 4336 independent reflections 2605 reflections with $I > 3\sigma(I)$ $R_{int} = 0.059$ Refinement

R = 0.024 wR = 0.027 S = 1.152605 reflections 265 parameters Only H-atom coordinates refined $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$

Table 1

Selected interatomic distances (Å).

$Br21 \cdots O7^{i}$	3.105 (2)	$C5 \cdots C18^{ii}$	3.589 (5)
Symmetry codes: (i) $x, -y$	$+\frac{3}{2}, z + \frac{1}{2};$ (ii) x, y	y + 1, z.	

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEPII* (Johnson, 1976) in *TEXSAN* (Molecular Structure Corporation, 1997); software used to prepare material for publication: *CRYS-TALS*.

We thank the Australian Research Council for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2268).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bray, B. L., Mathies, P. H., Naef, R., Solas, D. R., Tidwell, T. T., Artis, D. R. & Muchowski, J. M. (1990). J. Org. Chem. 55, 6317–6328.
- Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
- Couzijn, E. P. A., Schakel, M., de Kanter, F. J. J., Ehlers, A. W., Lutz, M., Spek, A. L. & Lammertsma, K. (2004). Angew. Chem. Int. Ed. 43, 3440–3442.
- Frenzel, A., Herbst-Irmer, R., Klingebiel, U. & Rudolph, S. (1996). J. Organomet. Chem. 524, 203–209.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kang, Y., Kang, S. O. & Ko, J. (1999). Organometallics, 18, 1818–1820.
- Kang, Y., Kang, S. O. & Ko, J. (2000). Organometallics, 19, 1216–1224.
- König, B., Rödel, M., Bubenitschek, P., Jones, P. G. & Thondorf, I. (1995). J. Org. Chem. 60, 7406–7410.
- Liu, J.-H., Yang, Q.-C., Mak, T. C. W. & Wong, H. N. C. (2000). J. Org. Chem. 65, 3587–3595.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.
- Marsh, R. E. (2004). Acta Cryst. B60, 252-253.
- Molecular Structure Corporation (1997). *TEXSAN*. Version 1.8. MSC, The Woodlands, Texas, USA.
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Acta Cryst. (2007). E63, o3712 [doi:10.1107/S1600536807037774]

Methyl 3,4-dibromo-2-(triisopropylsilyl)-1H-pyrrole-1-carboxylate

M. G. Banwell, K. E. Holden and A. C. Willis

Comment

During attempts to prepare compound (I) by sequential treatment of the known tribromide (II) (Bray *et al.*, 1990) with phenyllithium then methyl chloroformate an isomeric product was sometimes formed (and occasionally to the exclusion of the desired material). The isomer was subjected to a single-crystal X-ray analysis and thus establishing it was the title compound (III). This previously unreported tetra-substituted pyrrole most likely arises from an initial and selective lithium-for-bromine exchange reaction between phenyllithium and tribromide (II) and so forming the corresponding C2-lithiated compound. This last species presumably undergoes silyl group migration to give the more stable N1-lithiated isomer that then reacts with added methyl chloroformate and so affording the observed product. The silyl group migration proved to be a temperature sensitive process that could be suppressed by strict maintenance of the reaction temperature at 195 K and with the result that the desired compound, (I), was formed in preparatively useful yields.

Compound (III) represents the first example of a C2-triisopropylsilyl-substituted pyrrole for which a single-crystal Xray analysis has been reported although a few such analyses of other types of C2-silylated pyrroles have been described (König *et al.*, 1995; Frenzel *et al.*, 1996; Kang *et al.*, 1999; Liu *et al.*, 2000; Kang *et al.*, 2000; Couzijn *et al.*, 2004; Marsh, 2004). All of the non-hydrogen-containing bond lengths and angles (Table 1) associated with compound (III) fall within the expected ranges. The most conspicuous feature associated with the structure is the *s-transoid* arrangement adopted by the carbomethoxy group about the C6–N1 bond and this undoubtedly results from the steric effects exerted by the adjacent and bulky triisopropylsilyl group. The C2–C3 bond is notably longer than its C4–C5 counterpart (1.382 (3) *vs* 1.342 (3) Å) and may reflect the repulsive effectsoperating between the C2-triisopropylsilyl and C3-bromine groups attached to the carbons of the former bond. The N1–C2 bond is also longer than the equivalent N1–C5 bond (1.423 *vs* 1.385 Å) and this situation is probably the result of similar effects. In contrast the C3- and C4-bromine bonds are of similar length (1.879 (2) *vs* 1.871 (2) Å).

Experimental

Phenyllithium (0.41 ml of a 1.8 *M* solution in cyclohexane/diethyl ether, 0.74 mmol, *ex* Aldrich Chemical Co.) was added, dropwise, to a magnetically stirred solution of tribromopyrrole (II) (341 mg, 0.74 mmol) in dry THF (15 ml) maintained at 195 K under a nitrogen atmosphere. After 0.25 h unchilled methyl chloroformate (60 µl, 0.78 mmol) was added to the reaction mixture and then the cooling bath removed. Once the reaction mixture had warmed to 291 K it was diluted with water (10 ml) and extracted with ethyl acetate (3 × 15 ml). The combined organic extracts were then dried (MgSO₄), filtered and concentrated under reduced pressure. Subjection of the ensuing light-yellow oil to flash chromatography (silica, hexane elution) and concentration of the relevant fractions (R_f = 1/5) under reduced pressure afforded a white solid. Recrystallization of this material (methanol or THF) then gave the title compound (III) (42 mg, 13%) as colourless needles, m.p. 366–367 K [Found: ($M - C_3H_7$)⁺, 393.9485. $C_{15}H_{25}$ ⁷⁹Br₂NO₂Si requires ($M - C_3H_7$)⁺, 393.9474]. ¹H NMR (300 MHz, CDCl₃): δ 7.53 (*s*, 1H), 3.94 (*s*, 3H), 1.84 (*septet*, J = 7.5 Hz, 3H), 1.10 (d, J = 7.5 Hz, 18H); ¹³C NMR (75 MHz, CDCl₃): δ 150.4 (C),

130.7 (C), 125.1 (CH), 117.7 (C), 106.3 (C), 54.7 (CH₃), 19.2 (6 × CH₃), 12.8 (3 × CH); IR (KBr, v_{max} , cm⁻¹): 2945, 2866, 1757, 1440, 1353, 1302, 1280, 1215, 1127, 1036; MS (EI, 70 eV): 398, 396 and 394 [($M - C_3H_7$)⁺, 70, 100 and 69%].

Refinement

All H atoms were observed in a difference electron density map prior to their inclusion. They were added at calculated positions, and then refined positionally. The largest peaks in the final difference electron density map are located near the bromine atoms.

Figures

Figure 1. Molecular structure of (III) with labelling of selected atoms. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure 2. Unit cell packing diagram of (III) projected down the *b* axis. Hydrogen atoms are drawn as circles with small radii.

Methyl 3,4-dibromo-2-(triisopropylsilyl)-1H-pyrrole-1-carboxylate

Crystal data	
C ₁₅ H ₂₅ Br ₂ NO ₂ Si	$F_{000} = 888$
$M_r = 439.26$	$D_{\rm x} = 1.547 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 92459 reflections
a = 14.6807 (4) Å	$\theta = 3-27^{\circ}$
b = 7.3800 (2) Å	$\mu = 4.37 \text{ mm}^{-1}$
c = 17.4291 (5) Å	T = 200 K
$\beta = 92.8487 (15)^{\circ}$	Needle, colourless
$V = 1886.00 (9) \text{ Å}^3$	$0.36 \times 0.10 \times 0.07 \text{ mm}$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	2605 reflections with $I > 3\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.059$
T = 200 K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans with CCD	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: integration [via Gaussian method (Coppens, 1970) implemented in maXus (Mackay <i>et al.</i> , 1999)]	$h = -19 \rightarrow 19$
$T_{\min} = 0.447, \ T_{\max} = 0.762$	$k = -8 \rightarrow 9$
41120 measured reflections	<i>l</i> = −22→22
4336 independent reflections	

Refinement

Refinement on F	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	Only H-atom coordinates refined
$R[F^2 > 2\sigma(F^2)] = 0.024$	Method, part 1, Chebychev polynomial [Carruthers & Watkin (1979). Acta Cryst. A35, 698–699; Prince (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer–Verlag] [weight] = $1/[A_0*T_0(x) + A_1*T_1(x) - A_{n-1}]*T_{n-1}(x)]$ where A_i are the Chebychev coefficients listed be- low and $x = F /F$ max Method = Robust Weighting (Prince, 1982) W = [weight][1- $(\delta F/6\sigma F)^2$] ² , A_i are: 2.01 -0.979 2.14 -0.341 0.473
$wR(F^2) = 0.027$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.15	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
2605 reflections	$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$
265 parameters	Extinction correction: None

Primary atom site location: structure-invariant direct methods

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.36958 (13)	0.5984 (3)	0.44081 (10)	0.0297
C2	0.28285 (16)	0.5206 (3)	0.45316 (12)	0.0311
C3	0.26276 (17)	0.5898 (4)	0.52402 (13)	0.0359
C4	0.33465 (18)	0.7017 (3)	0.55408 (13)	0.0362
C5	0.39939 (18)	0.7052 (4)	0.50238 (13)	0.0354
C6	0.41628 (16)	0.5914 (3)	0.37249 (13)	0.0313
O7	0.38537 (12)	0.5309 (2)	0.31321 (9)	0.0383
O8	0.49883 (12)	0.6636 (3)	0.38432 (10)	0.0445
C9	0.5537 (2)	0.6726 (5)	0.3175 (2)	0.0534
Si10	0.22018 (4)	0.35292 (9)	0.38468 (3)	0.0298

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.16792 (19)	0.4966 (4)	0.30420 (14)	0.0388
C12	0.0864 (2)	0.6051 (5)	0.3294 (2)	0.0580
C13	0.1456 (3)	0.3964 (5)	0.22850 (17)	0.0550
C14	0.12861 (19)	0.2398 (4)	0.44087 (15)	0.0421
C15	0.1679 (3)	0.1198 (5)	0.5064 (2)	0.0597
C16	0.0573 (2)	0.1367 (5)	0.3905 (2)	0.0555
C17	0.30387 (18)	0.1785 (4)	0.34943 (15)	0.0389
C18	0.3822 (2)	0.1358 (5)	0.4070 (2)	0.0571
C19	0.2602 (3)	0.0001 (4)	0.3208 (2)	0.0539
Br20	0.15689 (2)	0.56204 (5)	0.579168 (18)	0.0638
Br21	0.34204 (2)	0.82451 (4)	0.648093 (14)	0.0502
H51	0.452 (2)	0.765 (4)	0.5030 (16)	0.0425*
H91	0.609 (3)	0.718 (5)	0.3363 (19)	0.0648*
Н92	0.565 (2)	0.564 (5)	0.301 (2)	0.0648*
Н93	0.521 (2)	0.745 (5)	0.280 (2)	0.0648*
H111	0.215 (2)	0.581 (4)	0.2954 (16)	0.0462*
H121	0.068 (2)	0.691 (5)	0.291 (2)	0.0692*
H122	0.094 (3)	0.661 (5)	0.376 (2)	0.0692*
H123	0.035 (3)	0.524 (5)	0.332 (2)	0.0692*
H131	0.121 (2)	0.477 (5)	0.191 (2)	0.0654*
H132	0.198 (3)	0.336 (5)	0.211 (2)	0.0654*
H133	0.100 (2)	0.308 (5)	0.237 (2)	0.0654*
H141	0.097 (2)	0.340 (4)	0.4636 (18)	0.0510*
H151	0.218 (3)	0.180 (5)	0.540 (2)	0.0720*
H152	0.189 (3)	0.011 (6)	0.487 (2)	0.0720*
H153	0.119 (3)	0.076 (5)	0.536 (2)	0.0720*
H161	0.025 (2)	0.218 (5)	0.349 (2)	0.0665*
H162	0.087 (3)	0.033 (5)	0.369 (2)	0.0665*
H163	0.014 (2)	0.089 (5)	0.422 (2)	0.0665*
H171	0.330 (2)	0.235 (4)	0.3058 (17)	0.0468*
H181	0.417 (2)	0.244 (6)	0.423 (2)	0.0683*
H182	0.424 (2)	0.046 (5)	0.382 (2)	0.0683*
H183	0.363 (2)	0.080 (5)	0.454 (2)	0.0683*
H191	0.211 (3)	0.021 (5)	0.282 (2)	0.0649*
H192	0.307 (2)	-0.077 (5)	0.296 (2)	0.0649*
H193	0.241 (2)	-0.066 (5)	0.361 (2)	0.0649*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0299 (10)	0.0344 (10)	0.0250 (8)	-0.0019 (8)	0.0032 (7)	-0.0007 (8)
C2	0.0346 (12)	0.0344 (12)	0.0246 (10)	-0.0012 (10)	0.0044 (9)	0.0009 (9)
C3	0.0422 (14)	0.0371 (13)	0.0288 (11)	-0.0024 (11)	0.0062 (10)	-0.0026 (10)
C4	0.0484 (15)	0.0337 (13)	0.0262 (10)	0.0012 (11)	-0.0007 (10)	-0.0015 (9)
C5	0.0402 (14)	0.0359 (14)	0.0298 (11)	-0.0039 (11)	-0.0015 (10)	-0.0008 (9)
C6	0.0355 (12)	0.0279 (12)	0.0308 (11)	0.0016 (10)	0.0056 (9)	0.0047 (9)
O7	0.0454 (10)	0.0455 (10)	0.0243 (8)	-0.0084 (8)	0.0061 (7)	-0.0006 (7)
O8	0.0348 (9)	0.0565 (12)	0.0430 (9)	-0.0121 (9)	0.0105 (7)	-0.0059 (9)

C9	0.0472 (17)	0.0580 (19)	0.0571 (18)	-0.0137 (16)	0.0232 (14)	-0.0044 (16)
Si10	0.0305 (3)	0.0318 (3)	0.0271 (3)	-0.0021 (3)	0.0026 (2)	-0.0004 (2)
C11	0.0380 (14)	0.0409 (14)	0.0368 (12)	-0.0017 (12)	-0.0047 (10)	0.0031 (11)
C12	0.0503 (18)	0.055 (2)	0.068 (2)	0.0140 (16)	-0.0045 (16)	0.0031 (17)
C13	0.060 (2)	0.067 (2)	0.0368 (14)	-0.0038 (18)	-0.0100 (14)	0.0001 (14)
C14	0.0426 (15)	0.0432 (15)	0.0412 (13)	-0.0079 (13)	0.0094 (11)	-0.0042 (12)
C15	0.071 (2)	0.060 (2)	0.0494 (17)	-0.0170 (17)	0.0144 (16)	0.0175 (15)
C16	0.0421 (16)	0.058 (2)	0.067 (2)	-0.0181 (15)	0.0087 (15)	-0.0077 (16)
C17	0.0395 (13)	0.0332 (13)	0.0445 (13)	-0.0016 (11)	0.0075 (11)	-0.0029 (11)
C18	0.0496 (18)	0.0403 (17)	0.081 (2)	0.0089 (14)	-0.0040 (17)	0.0041 (16)
C19	0.060 (2)	0.0400 (16)	0.0632 (19)	-0.0017 (15)	0.0128 (16)	-0.0114 (14)
Br20	0.06063 (19)	0.0831 (3)	0.05041 (17)	-0.01778 (18)	0.03013 (14)	-0.02307 (16)
Br21	0.0718 (2)	0.04899 (16)	0.03003 (12)	-0.00375 (15)	0.00367 (11)	-0.01156 (11)

Geometric parameters (Å, °)

N1—C2	1.423 (3)	C12—H122	0.91 (4)
N1—C5	1.385 (3)	C12—H123	0.96 (4)
N1—C6	1.404 (3)	C13—H131	0.94 (4)
C2—C3	1.382 (3)	С13—Н132	0.95 (4)
C2—Si10	1.922 (2)	С13—Н133	0.95 (4)
C3—C4	1.419 (4)	C14—C15	1.535 (4)
C3—Br20	1.879 (2)	C14—C16	1.535 (4)
C4—C5	1.342 (3)	C14—H141	0.97 (3)
C4—Br21	1.871 (2)	C15—H151	1.02 (4)
С5—Н51	0.89 (3)	С15—Н152	0.93 (4)
C6—O7	1.194 (3)	С15—Н153	0.96 (4)
C6—O8	1.331 (3)	С16—Н161	1.04 (4)
O8—C9	1.450 (3)	C16—H162	0.97 (4)
С9—Н91	0.93 (4)	С16—Н163	0.93 (4)
С9—Н92	0.88 (4)	C17—C18	1.521 (4)
С9—Н93	0.95 (4)	C17—C19	1.537 (4)
Si10—C11	1.890 (3)	С17—Н171	0.96 (3)
Si10—C14	1.896 (3)	C18—H181	0.98 (4)
Si10—C17	1.902 (3)	C18—H182	1.02 (4)
C11—C12	1.523 (4)	C18—H183	0.98 (4)
C11—C13	1.534 (4)	C19—H191	0.98 (4)
С11—Н111	0.95 (3)	С19—Н192	1.00 (4)
C12—H121	0.95 (4)	С19—Н193	0.91 (4)
Br21····O7 ⁱ	3.105 (2)	C5…C18 ⁱⁱ	3.589 (5)
C2—N1—C5	111.29 (18)	C11—C13—H131	110 (2)
C2—N1—C6	126.27 (19)	С11—С13—Н132	111 (2)
C5—N1—C6	122.0 (2)	H131—C13—H132	111 (3)
N1—C2—C3	102.6 (2)	С11—С13—Н133	109 (2)
N1-C2-Si10	124.77 (15)	H131—C13—H133	107 (3)
C3—C2—Si10	132.56 (18)	H132—C13—H133	109 (3)
C2—C3—C4	110.9 (2)	Si10—C14—C15	112.8 (2)
C2—C3—Br20	129.47 (19)	Si10—C14—C16	113.8 (2)

C4—C3—Br20	119.57 (17)	C15—C14—C16	111.1 (3)
C3—C4—C5	107.6 (2)	Si10-C14-H141	104.0 (18)
C3—C4—Br21	127.93 (18)	C15—C14—H141	107.8 (18)
C5—C4—Br21	124.5 (2)	C16—C14—H141	106.7 (18)
N1—C5—C4	107.6 (2)	C14—C15—H151	114 (2)
N1—C5—H51	122.1 (18)	C14—C15—H152	110 (2)
C4—C5—H51	130.3 (19)	H151—C15—H152	110 (3)
N1—C6—O7	124.5 (2)	C14—C15—H153	109 (2)
N1—C6—O8	109.5 (2)	H151—C15—H153	112 (3)
O7—C6—O8	126.0 (2)	H152—C15—H153	100 (3)
С6—О8—С9	115.6 (2)	C14—C16—H161	113.1 (20)
O8—C9—H91	104 (2)	C14—C16—H162	108 (2)
O8—C9—H92	111 (2)	H161—C16—H162	113 (3)
Н91—С9—Н92	106 (3)	C14—C16—H163	109 (2)
O8—C9—H93	107 (2)	H161—C16—H163	108 (3)
Н91—С9—Н93	116 (3)	H162—C16—H163	105 (3)
Н92—С9—Н93	113 (3)	Si10—C17—C18	114.0 (2)
C2—Si10—C11	105.30 (11)	Si10—C17—C19	114.7 (2)
C2—Si10—C14	107.01 (11)	C18—C17—C19	109.0 (3)
C11—Si10—C14	110.99 (13)	Si10-C17-H171	104.3 (18)
C2—Si10—C17	109.84 (11)	C18—C17—H171	107.2 (17)
C11—Si10—C17	112.63 (12)	C19—C17—H171	107.0 (18)
C14—Si10—C17	110.78 (13)	C17—C18—H181	113 (2)
Si10-C11-C12	112.1 (2)	C17—C18—H182	107 (2)
Si10-C11-C13	115.4 (2)	H181—C18—H182	109 (3)
C12—C11—C13	111.4 (3)	C17—C18—H183	114 (2)
Si10-C11-H111	102.3 (18)	H181—C18—H183	106 (3)
C12-C11-H111	107.2 (18)	H182—C18—H183	107 (3)
C13—C11—H111	107.6 (18)	C17—C19—H191	112 (2)
C11—C12—H121	110 (2)	С17—С19—Н192	110 (2)
C11—C12—H122	116 (2)	H191—C19—H192	107 (3)
H121—C12—H122	110 (3)	С17—С19—Н193	110 (2)
C11—C12—H123	108 (2)	H191—C19—H193	112 (3)
H121—C12—H123	105 (3)	H192—C19—H193	106 (3)
H122—C12—H123	108 (3)		
Br20—C3—C2—Si10	-6.5 (4)	C2—Si10—C14—C16	165.9 (2)
Br20—C3—C2—N1	176.4 (2)	C2—Si10—C17—C18	31.0 (2)
Br20—C3—C4—Br21	3.2 (3)	C2—Si10—C17—C19	157.7 (2)
Br20—C3—C4—C5	-177.1 (2)	C2—N1—C5—C4	-0.8 (3)
Br21—C4—C3—C2	-179.1 (2)	C2—C3—C4—C5	0.7 (3)
Br21—C4—C5—N1	179.8 (2)	C3—C2—Si10—C11	104.7 (3)
Si10—C2—N1—C5	-176.3 (2)	C3—C2—Si10—C14	-13.4 (3)
Si10—C2—N1—C6	11.5 (3)	C3—C2—Si10—C17	-133.8 (2)
Si10—C2—C3—C4	176.1 (2)	C3—C2—N1—C5	1.1 (3)
07—C6—O8—C9	1.9 (4)	C3—C2—N1—C6	-171.1 (2)
O7—C6—N1—C2	6.5 (4)	C4—C5—N1—C6	171.9 (2)
O7—C6—N1—C5	-165.0 (2)	C11—Si10—C14—C15	179.4 (2)
O8—C6—N1—C2	-174.1 (2)	C11—Si10—C14—C16	51.5 (2)
O8—C6—N1—C5	14.4 (3)	C11—Si10—C17—C18	148.0 (2)

N1 C2 C11	79.7 (2)	011 0:10 017 010	95.2(2)
NI-C2-S110-C11	-/8./(2)	CII—SII0—CI/—CI9	-85.3 (2)
N1-C2-Si10-C14	163.2 (2)	C12-C11-Si10-C14	42.3 (2)
N1—C2—Si10—C17	42.8 (2)	C12-C11-Si10-C17	167.1 (2)
N1—C2—C3—C4	-1.1 (3)	C13-C11-Si10-C14	-86.7 (3)
N1—C5—C4—C3	0.1 (3)	C13-C11-Si10-C17	38.2 (3)
N1C6C9	-177.5 (2)	C14—Si10—C17—C18	-87.1 (2)
C2—Si10—C11—C12	-73.2 (2)	C14—Si10—C17—C19	39.7 (2)
C2—Si10—C11—C13	157.8 (2)	C15-C14-Si10-C17	53.5 (2)
C2—Si10—C14—C15	-66.2 (2)	C16-C14-Si10-C17	-74.4 (2)
Symmetry codes: (i) x , $-y+3/2$, $z+1/2$; (ii)	i) $x, y+1, z$.		

TIPS = triisopropylsilyl